Prog S000851

(* On a Power Mac, this Mathematica program takes about 40 minutes *)


nn = PrimePi[8191];

t1 = {2};

t5 = {31, 1801};

t7 = {127};

t13 = {8191}; found = Union[t1, t5, t7, t13]; t2 = {}; 

Do[ps = Position[(2^Range[k/2] + 1)/k, _?(IntegerQ[#] &), 1, 1]; 

  If[ps != {}, AppendTo[found, k]; AppendTo[t2, {k, ps[[1, 1]]}]], {k,

    Prime[Range[2, nn]]}]; Length[found]

    

t3 = {}; 

Do[Do[If[! MemberQ[found, k], 

  ps = Position[(2^j + 2^Range[j - 1] + 1)/k, _?(IntegerQ[#] &), 1, 1]; 

  If[ps != {}, AppendTo[found, k]; 

    AppendTo[t3, {k, j, ps[[1, 1]]}]; Break[]]], {j, 2, k/3}], {k, 

    Prime[Range[2, nn]]}]; Length[found]

    

t4 = {}; 

Do[Do[If[! MemberQ[found, k], 

  ps = Position[(2^j + 2^i + 2^Range[i - 1] + 1)/k, _?(IntegerQ[#] &), 1, 1]; 

  If[ps != {}, AppendTo[found, k]; 

    AppendTo[t4, {k, j, i, ps[[1, 1]]}]; Break[]]], {j, 3, k/10}, {i, 2, j}],

    {k, Prime[Range[2, nn]]}]; Length[found]

    

s1 = {{2, 1}};

s2 = Table[{i[[1]], (2^i[[2]] + 1)/i[[1]]}, {i, t2}];

s3 = Table[{i[[1]], (2^i[[2]] + 2^i[[3]] + 1)/i[[1]]}, {i, t3}];

s4 = Table[{i[[1]], (2^i[[2]] + 2^i[[3]] + 2^i[[4]] + 1)/i[[1]]}, {i, 

    t4}];

s5 = Transpose[{t5, Table[1, {Length[t5]}]}];

s7 = {Append[t7, 1]};

s13 = {Append[t13, 1]};

seq2 = Sort[Join[s1, s2, s3, s4, s5, s7, s13]];

tAll = Transpose[seq2][[2]];

© Tony D Noe 2014-2016