S000033


Unique-period primes in base 3, written in base 3.

2, 111, 12, 102, 21, 1111111, 1112, 1001001, 2021, 2201, 1111111111111, 202021, 20020221, 1121202, 200200220221, 22220001, 202020202021, 1111111111111112, 20020020020220220221, 222222000001, 2222000022220001, 2020202020202020202021

1

S000033

As in the base-10 case, these primes have a unique structure.

T. D. Noe, Plot of 66 terms

T. D. Noe, Table of 66 terms

Chris K. Caldwell, Unique prime

(Mma) nn = 100; t3 = Table[c = Cyclotomic[n, 3]; c/GCD[n, c], {n, 2, nn}]; p3 = Select[t3, PrimePowerQ]; p3 = Table[FactorInteger[i][[1, 1]], {i, p3}]; Table[FromDigits[IntegerDigits[i, 3]], {i, p3}]

Cf. A040017 (base-10 unique-period primes), A161509 (base 2), A064079.
Cf. S000019, S000026.

nonn,base

T. D. Noe, May 14 2014

© Tony D Noe 2014-2015