S000066


Irregular triangle of the offsets used in S000064 and S000065.

1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 1, 3, 7, 1, 5, 7, 1, 3, 7, 9, 1, 3, 7, 9, 1, 5, 7, 11, 1, 3, 7, 9, 1, 3, 9, 13, 1, 7, 11, 13, 1, 5, 7, 11, 13, 1, 3, 7, 9, 13, 1, 5, 7, 11, 13, 17, 1, 5, 7, 11, 13, 17, 1, 7, 11, 13, 17, 19, 1, 5, 11, 13, 19, 1, 3, 9, 13, 15, 19, 21

2

S000066

Note that the last term s(22) = {1, 3, 9, 13, 15, 19, 21} has three twin primes. The prime numbers are found using the calculation 22 * S000065(22) + s(22) = 22 * 867709 + {1, 3, 9, 13, 15, 19, 21} = {19089599, 19089601, 19089607, 19089611, 19089613, 19089617, 19089619}.

T. D. Noe, Plot of irregular rows 2 to 22

The triangle begins
{1},
{1}, 
{1, 3}, 
{1, 3}, 
{1, 5}, 
{1, 3}, 
{1, 3, 7}, 
{1, 5, 7}, 
{1, 3, 7, 9}, 
{1, 3, 7, 9}, 
{1, 5, 7, 11}, 
{1, 5, 7, 11}, 
{1, 3, 9, 13}, 
{1, 7, 11, 13}, 
{1, 3, 7, 13, 15}, 
{1, 3, 9, 13, 15}, 
{1, 5, 7, 11, 13, 17}, 
{1, 5, 7, 11, 13, 17}, 
{1, 3, 7, 9, 13, 19}, 
{1, 5, 11, 17, 19}, 
{1, 3, 9, 13, 15, 19, 21}

(Mma) Table[mx = {}; Do[s = Select[n*i + Range[n], PrimeQ]; If[Length[s] > Length[mx] || (Length[s] == Length[mx] && Min[s - n*i] < Min[mx]), mx = s - n*i], {i, 10^6}]; mx, {n, 2, 22}]

nonn,hard,tabf

T. D. Noe, May 30 2014

© Tony D Noe 2014-2015