Coefficients of the minimal polynomial having a Salem number under 1.3 as a root, sorted.
1, 0, 0, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1, -1, -1, -1, -1, 0, 1, 1, 1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, 0, 1, 1, -1, 1, -1, 0, 0, -1, 0, 0, -1, 1, -1, 1, 1, 0
1
These polynomials are sorted by degree and then the Salam number they produce. The degree of the n-th polynomial is given in S000183. These polynomials are symmetric.
T. D. Noe, Plot of polynomial coefficients (1095 terms)
T. D. Noe, Table of polynomial coefficients (1095 terms)
Example: the polynomials begin
1, 0, 0, -1, -1, -1, 0, 0, 1
1, 1, 0, -1, -1, -1, -1, -1, 0, 1, 1
(Mma) {let the coefficients of the i-th polynomial be in the array t[[i]]. Then the i-th Salem number is computed by} p = t[[i]]; poly = p.x^Range[0, Length[p] - 1]; NRoots[poly == 0, x, PrecisionGoal -> 15][[-1, 2]]
sign,tabf
T. D. Noe, Aug 06 2014