S000190


Prime number s(n) such that (primepi(p) - primepi(s(n)) / (p - s(n)) is smaller for greater prime p.

2, 3, 7, 19, 47, 73, 113, 199, 283, 467, 661, 887, 1129, 1327, 1627, 2803, 3947, 4297, 5881, 6379, 7043, 9949, 10343, 13187, 15823, 18461, 24137, 33647, 34763, 37663, 42863, 43067, 59753, 59797, 82619, 96017, 102679, 129643, 130699, 142237, 155893, 187477

1

S000190

This sequence is A246033 in OEIS. Here we show more information.

T. D. Noe, Plot of 200 terms

T. D. Noe, Table of 200 terms

Edward Tutaj, Prime numbers with a certain extremal type property, arXiv 1408.3609, Aug 15 2014

(Mma) t = {2}; Do[k = PrimePi[t[[-1]]]; s = Table[(n - k)/(Prime[n] - Prime[k]), {n, k + 1, 3*k}]; pos = Position[s, Max[s]][[-1]]; AppendTo[t, Prime[k + pos[[1]]]], {99}]; t

Cf. S000191 (indices of these primes), A246033.

nonn

T. D. Noe, Aug 19 2014

© Tony D Noe 2014-2015