Numbers n such that 2n+5, 2n+7, and 2n+11 are prime.
0, 3, 6, 18, 48, 51, 93, 111, 153, 171, 228, 318, 408, 426, 438, 543, 636, 648, 711, 738, 741, 801, 933, 996, 1038, 1116, 1131, 1326, 1341, 1623, 1728, 1761, 1833, 1956, 1998, 2061, 2256, 2316, 2391, 2463, 2481, 2613, 2736, 2748, 2823, 3096, 3411, 3936
1
The offsets (5, 7, 11) are prime. Suggested in the paper by Granville.
T. D. Noe, Plot of 1000 terms
T. D. Noe, Table of 1000 terms
Andrew Granville, Primes in intervals of bounded length, arXiv 1410.8400 (Oct 30 2014)
(Mma) Select[Range[4000], And @@ PrimeQ /@ ({5, 7, 11} + 2*#) &]
nonn
T. D. Noe, Nov 05 2014