S000344


Numbers n such that the n-th triangular number n*(n+1)/2 is a palindrome in base 2.

1, 2, 5, 6, 9, 17, 21, 25, 33, 42, 65, 90, 129, 170, 257, 341, 357, 450, 513, 693, 893, 1025, 1365, 1397, 1445, 1617, 1670, 1750, 2049, 2730, 4097, 5418, 5985, 8193, 10397, 10922, 16385, 17313, 21717, 21845, 31749, 32769, 40637, 43605, 51537, 63482, 65537

1

S000344

Ulas proves that this sequence is infinite. It is infinite because n = 2^k+1 is a term for all k > 1. See the base 2 numbers in S000352.

T. D. Noe, Plot of 109 terms

T. D. Noe, Table of 109 terms

Maciej Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv 0811.2477 (Nov 15 2008)

Eric W. Weisstein, MathWorld: Triangular Number

(Mma) ff[base_, len_] := Module[{n = 0, t = {}, tri, d}, While[Length[t] < len, n++; tri = n*(n + 1)/2; d = IntegerDigits[tri, base]; If[d == Reverse[d], AppendTo[t, n]]]; t]; ff[2, 40]

Cf. A003098A008509 (base 10), S000345-S000351 (bases 3-9), S000352.

nonn,base,hard

T. D. Noe, Nov 18 2014

© Tony D Noe 2014-2015