S000375


Numbers n such that 10^n+1 has only one primitive prime factor.

0, 1, 2, 5, 6, 7, 12, 18, 19, 24, 31, 53, 60, 67, 75, 98, 147, 160, 293, 327, 369, 586, 641, 702, 713, 726, 876, 906, 918, 922, 931, 1067, 1116, 1132, 1875, 2137, 2177, 3011, 3261, 3341, 4348, 4775, 6546, 6685, 7357, 7728, 9334, 9455, 9620

1

S000375

Numbers n such that S000015(n) = 1.

T. D. Noe, Plot of 49 terms

T. D. Noe, Table of 49 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 10; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. S000015.

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015