Gaussian primes near the curve z = exp(I * t).
1, 1, 2, 1, 1, 2, 1, 4, -1, 6, -8, 7, -10, 7, -12, 7, -16, 5, -20, 3, -23, 0, -24, -1, -28, -5, -30, -11, -32, -13, -32, -15, -34, -21, -35, -22, -35, -24, -35, -26, -36, -29, -36, -35, -35, -48, -29, -70, -26, -75, -25, -78, -23, -82, -17, -90, -17, -92, -14
1
See sequence S000389 for all the Gaussian integers near the curve.
T. D. Noe, Plot of 127 pairs
T. D. Noe, Table of 127 pairs
Eric W. Weisstein, MathWorld: Gaussian Prime
(Mma) t = {{0, 1}}; Do[z = Floor[{Cos[x] Exp[x] + 1/2, Sin[x] Exp[x] + 1/2}]; If[z != t[[-1]], AppendTo[t, z]], {x, 0, 2 Pi, 0.000001}]; Select[t, PrimeQ[#[[1]] + I*#[[2]], GaussianIntegers -> True] &]
Cf. S000389.
sign
T. D. Noe, Dec 03 2014