Position of the center of a “real” 4-lion in the first quadrant, sorted by magnitude and imaginary part.
3, 1, 1, 3, 25, 5, 5, 25, 45, 15, 15, 45, 120, 30, 30, 120, 125, 5, 5, 125, 130, 50, 50, 130, 175, 65, 65, 175, 260, 20, 20, 260, 310, 10, 10, 310, 240, 210, 210, 240, 310, 110, 110, 310, 335, 5, 5, 335, 250, 230, 230, 250, 305, 215, 215, 305, 310, 220, 220, 310
1
See S000421.
T. D. Noe, Plot of 3126 pairs
T. D. Noe, Table of 3126 pairs
John Renze, Stan Wagon, and Brian Wick, The Gaussian Zoo, Experimental Math. 10:2, p. 161-173.
(Mma) nn = 1000; t = {}; Do[z = x + I*y; If[PrimeQ[z - 1, GaussianIntegers -> True] && PrimeQ[z + 1, GaussianIntegers -> True] && PrimeQ[z - I, GaussianIntegers -> True] && PrimeQ[z + I, GaussianIntegers -> True], If[Abs[z] <= nn, t = AppendTo[t, {Abs[z]^2, {x, y}}]; AppendTo[t, {Abs[z]^2, {y, x}}]]], {x, 0, nn}, {y, x-1}]; t = Sort[t]; t2 = Transpose[t][[2]]; Table[{z[[2]], z[[1]]}, {z, t2}]
Cf. S000421.
nonn
T. D. Noe, Dec 19 2014