S000460


Number of ways in which prime(n) can be written as the sum of 3 odd composite numbers.

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 9, 12, 18, 15, 27, 39, 30, 42, 66, 60, 78, 72, 105, 90, 153, 141, 162, 210, 222, 261, 279, 312, 306, 324, 390, 432, 462, 507, 498, 561, 660, 747, 735, 816, 798, 864, 924, 987, 1029, 1113, 1197, 1260, 1320, 1326

1

S000460

This sequence is like S000458, except the numbers u,v,w are orderless. Note that the first odd composite number is 9.

T. D. Noe, Plot of 1000 terms

T. D. Noe, Table of 1000 terms

(Mma) nn = Prime[100]; ps = Prime[Range[PrimePi[nn]]]; oddNP = Complement[Range[9, nn, 2], ps]; Table[s = IntegerPartitions[p, {3}, oddNP]; cnt = 0; Do[k = Length[Union[i]]; If[k == 3, cnt = cnt + 6, If[k == 2, cnt = cnt + 3, cnt++]], {i, s}]; cnt, {p, ps}]

Cf. S000458.

nonn

T. D. Noe, Jan 26 2015

© Tony D Noe 2014-2015