S000466


Numbers n such that max(sfp(n), sfp(n+1), sfp(n+2)) < sqrt(n), where spf(n) is the squarefree part of n.

48, 9800, 31211, 32798, 48373, 59534, 63000, 118579, 373827, 488187, 629693, 830464, 1294298, 3815174, 8388223, 9235520, 9516680, 9841094, 11121382, 12708359, 14325848, 15407171, 18966023, 19890624, 24737542, 28140000, 29320000, 29445038, 34032190

1

S000466

Rouse and Yang do not consider this sequence. However, it is more dense than the sequence for exponent 1/3, which is the next sequence.

T. D. Noe, Plot of 77 terms

T. D. Noe, Table of 77 terms

Jeremy Rouse and Yilin Yang, Three Consecutive Almost Squares, arXiv 1502.00605 (Feb 02 2015).

Eric W. Weisstein, MathWorld: Squarefree Part

(Mma) sfp[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2])]; Select[Range[10^6], Max[sfp[#], sfp[# + 1], sfp[# + 2]] < Sqrt(#) &]

Cf. S000465, S000467.

nonn

T. D. Noe, Feb 04 2015

© Tony D Noe 2014-2015