Five-tuples of squares used in S000481.
36, 25, 9, 1, 1, 81, 64, 9, 4, 4, 196, 64, 64, 64, 4, 196, 169, 9, 9, 9, 196, 169, 25, 1, 1, 361, 169, 64, 64, 64, 484, 441, 25, 9, 9, 900, 441, 441, 9, 9, 1225, 1156, 64, 4, 1, 2401, 1156, 1156, 64, 25, 3364, 3025, 169, 169, 1, 6084, 3025, 3025, 25, 9
1
The first two numbers in each 5-tuple are usually so close that the plot points appear the same.
T. D. Noe, Plot of 60 5-tuples
T. D. Noe, Table of 60 5-tuples
Eric W. Weisstein, MathWorld: Fibonacci Number
(Mma) nn = 41; PerfectSquareQ[n_] := JacobiSymbol[n, 13] =!= -1 && JacobiSymbol[n, 19] =!= -1 && JacobiSymbol[n, 17] =!= -1 && JacobiSymbol[n, 23] =!= -1 && IntegerQ[Sqrt[n]]; f2 = Table[Fibonacci[n]^2, {n, 2, nn}]; t = {}; Do[If[a >= b >= c >= d && (a != b || a != c || a != d || b != c || b != d || c != d), n = a + b + c + d; If[PerfectSquareQ[n], AppendTo[t, {n, a, b, c, d}]]], {a, f2}, {b, f2}, {c, f2}, {d, f2}]; t
nonn
T. D. Noe, Feb 18 2015