S000485


Five-tuples of squares used in S000481.

36, 25, 9, 1, 1, 81, 64, 9, 4, 4, 196, 64, 64, 64, 4, 196, 169, 9, 9, 9, 196, 169, 25, 1, 1, 361, 169, 64, 64, 64, 484, 441, 25, 9, 9, 900, 441, 441, 9, 9, 1225, 1156, 64, 4, 1, 2401, 1156, 1156, 64, 25, 3364, 3025, 169, 169, 1, 6084, 3025, 3025, 25, 9

1

S000485

The first two numbers in each 5-tuple are usually so close that the plot points appear the same.

T. D. Noe, Plot of 60 5-tuples

T. D. Noe, Table of 60 5-tuples

Eric W. Weisstein, MathWorld: Fibonacci Number

(Mma) nn = 41; PerfectSquareQ[n_] := JacobiSymbol[n, 13] =!= -1 && JacobiSymbol[n, 19] =!= -1 && JacobiSymbol[n, 17] =!= -1 && JacobiSymbol[n, 23] =!= -1 && IntegerQ[Sqrt[n]]; f2 = Table[Fibonacci[n]^2, {n, 2, nn}]; t = {}; Do[If[a >= b >= c >= d && (a != b || a != c || a != d || b != c || b != d || c != d), n = a + b + c + d; If[PerfectSquareQ[n], AppendTo[t, {n, a, b, c, d}]]], {a, f2}, {b, f2}, {c, f2}, {d, f2}]; t

Cf. S000481-S000490.

nonn

T. D. Noe, Feb 18 2015

© Tony D Noe 2014-2015