S000564


Least prime p such that the interval to the next prime contains n prime factors (counted multiply).

3, 11, 59, 71, 239, 7, 13, 103, 97, 79, 127, 73, 23, 31, 61, 157, 373, 383, 251, 89, 359, 401, 683, 701, 139, 337, 283, 241, 211, 631, 1471, 199, 1399, 661, 113, 619, 1511, 509, 293, 953, 317, 773, 1583, 863, 2423, 1831, 2251, 1933, 1381, 4057, 2803, 523, 1069

2

S000564

The interval between primes 3 and 5 contains 2 prime factors (2,2). The interval between primes 11 and 13 contains 3 prime factors (2,2,3).

T. D. Noe, Plot of 499 terms

T. D. Noe, Table of 499 terms

Eric W. Weisstein, MathWorld: Primes Gaps

(Mma) nn = 10000; t = Join[{0}, Table[Total[Transpose[FactorInteger[n]][[2]]], {n, 2, Prime[nn]}]]; t2 = Table[Total[t[[Range[Prime[n] + 1, Prime[n + 1] - 1]]]], {n, nn - 1}]; t3 = Sort[t2]; missing = Complement[Range[t3[[-1]]], t3][[2]]; Table[Prime[Position[t2, n, 1, 1][[1, 1]]], {n, 2, missing - 1}]

Cf. S000565.

nonn

T. D. Noe, Apr 08 2015

© Tony D Noe 2014-2015