Number of pairs of numbers (n,x) with 0 < x <= n such that n^8 + x^8 is prime.
1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 2, 3, 2, 1, 2, 3, 1, 5, 1, 2, 1, 1, 0, 5, 1, 0, 3, 2, 0, 1, 2, 2, 4, 2, 0, 2, 3, 2, 4, 3, 3, 4, 5, 2, 6, 0, 1, 4, 3, 2, 3, 9, 4, 3, 7, 2, 2, 5, 4, 2, 3, 1, 7, 2, 6, 5, 5, 2, 8, 7, 4
1
It appears that for n > 62, there is an x in the range [0,n] such that n^8 + x^8 is prime.
T. D. Noe, Plot of 5000 terms
T. D. Noe, Table of 5000 terms
(Mma) Table[cnt = 0; Do[If[PrimeQ[x^8 + y^8], cnt++], {y, x}]; cnt, {x, 100}]
nonn
T. D. Noe, Apr 24 2015