S000647


Sorted numbers that are the product of primes of the form 8k ± 1 with non-increasing exponents.

1, 7, 49, 119, 343, 833, 2401, 2737, 5831, 14161, 16807, 19159, 40817, 84847, 99127, 117649, 134113, 285719, 325703, 593929, 693889, 823543, 938791, 1685159, 2000033, 2279921, 3478727, 4157503, 4857223, 5764801, 6571537, 7491169, 10096793, 11796113

1

S000647

That is, numbers of the form 7^a 17^b 23^c 31^d… with a >= b >= c >= d… sorted.

T. D. Noe, Plot of 1181 terms

T. D. Noe, Table of 1181 terms

(Mma) nn = 23; pr = Select[Prime[Range[nn]], Mod[#, 8] == 1 || Mod[#, 8] == 7 &]; len = Length[pr]; t = Flatten[Table[pr^PadRight[p, len], {n, len}, {p, IntegerPartitions[n]}], 1]; t2 = Table[Times @@ i, {i, t}]; Join[{1}, Sort[Select[t2, # <= pr[[1]]^len &]]]

Cf. A025487A054994, A147516.

nonn

T. D. Noe, Jun 04 2015

© Tony D Noe 2014-2015