S000754


Primes p congruent to 1 or 5 for which sum_{1..(p-1)/4} Legendre(i/p) reaches a new maximum.

5, 17, 29, 41, 89, 101, 257, 269, 461, 521, 701, 761, 941, 1109, 1361, 1889, 2141, 2609, 3449, 4241, 4289, 5081, 5381, 6569, 7229, 7829, 8069, 8609, 9749, 10601, 10709, 13109, 14621, 15461, 19421, 19841, 20789, 21089, 23201, 29669, 31121, 32009, 33809, 36209

1

S000754

Here Legendre(i/p) is the Legendre symbol.

T. D. Noe, Plot of 100 terms

T. D. Noe, Table of 100 terms

Eric W. Weisstein, MathWorld: Legendre Symbol

(Mma) t = {}; mx = 0; n = 0; While[Length[t] < 50, n++; p = Prime[n]; If[MemberQ[{1, 5}, Mod[p, 8]], s = Plus @@ JacobiSymbol[Range[(p - 1)/4], p]; If[s > mx, mx = s; AppendTo[t, {p, s}]]]]; Transpose[t][[1]]

Cf. S000752, S000753, S000755.

nonn,hard

T. D. Noe, Nov 20 2015

© Tony D Noe 2014-2015