All linear 11th-order sequences are a linear combination of these 11 sequences.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 32, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 64, 64, 64
1
Note that the 11-th row is the first row shifted by one.
T. D. Noe, Plot of 27 11-tuples
T. D. Noe, Table of 27 11-tuples
Eric W. Weisstein, MathWorld: Linear Recurrence Equation
(Mma) nn = 11; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t
nonn,tabl
T. D. Noe, Jan 15 2016