S000831


All linear 11th-order sequences are a linear combination of these 11 sequences.

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 32, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 64, 64, 64

1

S000831

Note that the 11-th row is the first row shifted by one.

T. D. Noe, Plot of 27 11-tuples

T. D. Noe, Table of 27 11-tuples

Eric W. Weisstein, MathWorld: Linear Recurrence Equation

(Mma) nn = 11; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t

Cf. A168082S000822-S000830.

nonn,tabl

T. D. Noe, Jan 15 2016

© Tony D Noe 2014-2016