Number of distinct prime factors in the n-th primitive abundant number (A006038).
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 4, 4, 5, 4, 5, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 5, 4, 5, 4
1
There are 8 threes and 576 fours.
T. D. Noe, Plot of 10000 terms
T. D. Noe, Table of 10000 terms
Wikipedia, Primitive abundant number
(Mma) t = {}; tf = {}; tds = {}; n = 1; While[Length[t] < 100, n = n + 2; ds = DivisorSigma[1, n]; If[ds > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]; AppendTo[tf, Length[FactorInteger[n]]]; AppendTo[tds, ds/n]]]; tf
nonn
T. D. Noe, Jul 31 2016