S000958


Least positive number x that begins a string of n composite numbers of the form x^2 + x + 41.

40, 40, 121, 161, 298, 325, 325, 1063, 1063, 1063, 1063, 1063, 5663, 5663, 5663, 5663, 9264, 9264, 9264, 22817, 22817, 37783, 37783, 47493, 100201, 100201, 100201, 167627, 167627, 167627, 167627, 167627, 167627, 167627, 167627, 176955, 176955, 176955, 1081296

1

S000958

Note that this sequence name differs in only one word from S000959.

Example: Let f(x) = x^2 + x + 41. Then the first string of 3 numbers begins at 121: f(121)=14803, f(122)=15047, and f(123)=15293, which factor into 113*131, 41*367, and 41*273.

T. D. Noe, Plot of 100 terms

T. D. Noe, Table of 100 terms

Carlos Rivera, Puzzle 853: The Euler polynomial again

(Mma) t = {}; cnt = 0; Do[If[PrimeQ[x^2 + x + 41], cnt = 0, cnt++]; If[cnt > Length[t], AppendTo[t, x - cnt + 1]], {x, 0, 1000000}]; t

Cf. A056561, S000959.

nonn

T. D. Noe, Nov 02 2016

© Tony D Noe 2014-2016