Even numbers which are the sum of two primes of the form x^2 + y^2 + 1.
6, 14, 22, 30, 38, 44, 52, 56, 60, 62, 64, 70, 72, 76, 78, 82, 84, 86, 92, 94, 100, 102, 104, 106, 110, 112, 114, 118, 120, 124, 126, 132, 134, 136, 140, 142, 146, 148, 150, 152, 154, 156, 160, 166, 168, 172, 174, 178, 180, 182, 184, 190, 192, 196, 198, 200
1
This is a slowly-increasing function.
T. D. Noe, Plot of 1000 terms
T. D. Noe, Table of 1000 terms
Joni Teravainen, The Goldbach problem for primes that are the sums of two squares plus one, arxiv.org 1611.08585 (Nov 25 2016)
(Mma) nn = 20; s = Select[Union[Flatten[Table[x^2 + y^2 + 1, {x, nn}, {y, x, nn}]]], # <= nn^2 + 2 && PrimeQ[#] &]; Select[Union[Flatten[Table[a + b, {a, s}, {b, s}]]], # < nn^2 + 5 &]
Cf. A079544.
nonn
T. D. Noe, Dec 02 2016