S000981


Least k > 1 such that S000980(n) divides k^k + (-1)^k (k-1)^(k-1).

257, 130, 1430, 10702, 16252, 38398, 52171, 11277, 43792, 8979, 139405, 81502, 9947, 47125, 182786, 115331, 11858, 323058, 176506, 86557, 178860, 118574, 59710, 372441, 38138, 194807, 223738, 27636, 450455, 185831, 36759, 725266, 705064, 189861, 651247

1

S000981

The variability of this function makes the completeness of A238194 an issue.

T. D. Noe, Plot of 153 terms

T. D. Noe, Table of 153 terms

David W. Boyd, Greg Martin, and Mark Thom, Squarefree values of trinomial discriminants, LMS J. Comput. Math. 18 (1) (2015), p. 148-169

(Mma) t2 = {}; Do[s = Select[Range[2, p^2], Mod[PowerMod[#, #, p^2] + (-1)^# PowerMod[# - 1, # - 1, p^2], p^2] == 0 &, 1]; If[Length[s] > 0, AppendTo[t2, s[[1]]]], {p, Prime[Range[PrimePi[1000]]]}]; t2

Cf. A238194, S000980-S000984.

nonn,hard

T. D. Noe, Mar 18 2017

© Tony D Noe 2014-2017