S000347


Numbers n such that the n-th triangular number n*(n+1)/2 is a palindrome in base 5.

1, 2, 3, 8, 12, 27, 62, 203, 216, 312, 543, 692, 923, 948, 1562, 2076, 3467, 5408, 7812, 12183, 12191, 17267, 25071, 26516, 39062, 125678, 135216, 142838, 195312, 268151, 276471, 591551, 616528, 976562, 1592088, 1612863, 2886576, 2891576, 3524688, 3658236

1

S000347

Ulas proves that this sequence is infinite. See the base 5 numbers in S000355.

T. D. Noe, Plot of 52 terms

T. D. Noe, Table of 52 terms

Maciej Ulas, On certain diophantine equations related to triangular and tetrahedral numbers, arXiv 0811.2477 (Nov 15 2008)

Eric W. Weisstein, MathWorld: Triangular Number

(Mma) ff[base_, len_] := Module[{n = 0, t = {}, tri, d}, While[Length[t] < len, n++; tri = n*(n + 1)/2; d = IntegerDigits[tri, base]; If[d == Reverse[d], AppendTo[t, n]]]; t]; ff[5, 20]

Cf. A003098A008509 (base 10), S000344-S000351 (bases 2-9), S000355.

nonn,base,hard

T. D. Noe, Nov 18 2014

© Tony D Noe 2014-2015