S000366


Numbers n such that 9^n-1 has only one primitive prime factor.

1, 2, 4, 6, 10, 12, 16, 18, 20, 30, 32, 36, 54, 64, 66, 118, 138, 152, 182, 232, 264, 336, 340, 380, 414, 446, 492, 540, 624, 720, 762, 1066, 1094, 1098, 1170, 1230, 1254, 1320, 1428, 1546, 2018, 2574, 2724, 2804, 2920, 3074, 3316, 3646, 4124, 4132, 4186

1

S000366

Numbers n such that S000007(n) = 1.

T. D. Noe, Plot of 58 terms

T. D. Noe, Table of 58 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 9; Select[Range[1000], PrimePowerQ[Cyclotomic[#, d]/GCD[Cyclotomic[#, d], #]] &]

Cf. A161508 (2^n-1 case), S000007, S000360-S000365.

nonn,hard

T. D. Noe, Nov 20 2014

© Tony D Noe 2014-2015