S000367


Numbers n such that 2^n+1 has only one primitive prime factor.

0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 27, 28, 31, 39, 40, 43, 45, 49, 60, 61, 63, 75, 79, 85, 87, 92, 96, 101, 104, 117, 127, 140, 148, 156, 161, 167, 171, 183, 187, 191, 199, 205, 207, 275, 295, 300, 301, 313, 345, 347, 356

1

S000367

Numbers n such that A086257(n) = 1.

T. D. Noe, Plot of 123 terms

T. D. Noe, Table of 123 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 2; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. A086257 (number of primitive prime factors of 2^n + 1).

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015