S000368


Numbers n such that 3^n+1 has only one primitive prime factor.

0, 2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 20, 23, 30, 32, 35, 36, 43, 54, 64, 65, 66, 77, 118, 138, 152, 182, 215, 232, 264, 281, 336, 340, 359, 380, 391, 414, 446, 487, 492, 529, 535, 540, 577, 624, 713, 720, 731, 762, 799, 1066, 1094, 1098, 1170, 1230, 1254

1

S000368

Numbers n such that S000008(n) = 1.

T. D. Noe, Plot of 99 terms

T. D. Noe, Table of 99 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 3; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[2, 1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. S000008.

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015