S000369


Numbers n such that 4^n+1 has only one primitive prime factor.

0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 20, 30, 46, 48, 52, 70, 74, 78, 150, 178, 204, 298, 306, 346, 366, 378, 400, 476, 498, 502, 614, 634, 1120, 1266, 1530, 1898, 1912, 1972, 2548, 2770, 3738, 3850, 4272, 4900, 7314, 7914, 8454, 9240

1

S000369

Numbers n such that S000009(n) = 1.

T. D. Noe, Plot of 48 terms

T. D. Noe, Table of 48 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 4; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. S000009.

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015