S000371


Numbers n such that 6^n+1 has only one primitive prime factor.

0, 1, 2, 3, 4, 9, 11, 12, 15, 21, 25, 31, 43, 45, 47, 59, 62, 72, 77, 93, 96, 107, 177, 180, 240, 279, 382, 407, 437, 514, 525, 551, 579, 688, 732, 734, 811, 891, 917, 962, 1048, 1088, 1232, 1408, 1719, 2088, 2176, 2248, 2724, 2819, 3180, 3515, 3575, 4269

1

S000371

Numbers n such that S000011(n) = 1.

T. D. Noe, Plot of 66 terms

T. D. Noe, Table of 66 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 6; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. S000011.

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015