S000372


Numbers n such that 7^n+1 has only one primitive prime factor.

0, 2, 3, 4, 9, 14, 15, 17, 18, 23, 24, 25, 27, 29, 38, 42, 47, 61, 74, 112, 140, 144, 148, 166, 176, 228, 264, 325, 327, 365, 370, 513, 730, 830, 1130, 1190, 1445, 1619, 2010, 2358, 2454, 2962, 3170, 3447, 3522, 4098, 4242, 4686, 5024, 6630, 6944, 7099

1

S000372

Numbers n such that S000012(n) = 1.

T. D. Noe, Plot of 57 terms

T. D. Noe, Table of 57 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 7; f2[n_] := Cyclotomic[2*n, d]/Cyclotomic[n, d]; Join[{0}, Select[Range[2, 1000], PrimePowerQ[f2[#]/GCD[f2[#], #]] &]]

Cf. S000012.

nonn,hard

T. D. Noe, Nov 21 2014

© Tony D Noe 2014-2015