S000436


Primes p such that the iteration in S000334 converges after more than primepi(p) steps.

2, 3, 5, 7, 11, 13, 23, 31, 37, 47, 61, 71, 73, 83, 89, 97, 103, 107, 113, 137, 139, 151, 167, 173, 179, 181, 191, 199, 211, 233, 239, 241, 251, 271, 331, 347, 349, 359, 379, 383, 389, 421, 431, 457, 461, 467, 479, 521, 547, 557, 563, 569, 577, 587, 593

1

S000436

See the Bessoud and Wagon book for more information about the conductor (but not this function).

T. D. Noe, Plot of 273 terms

T. D. Noe, Table of 273 terms

David Bessoud and Stan Wagon, A Course in Computational Number Theory, Key College Publishing, 2000.

(Mma) Needs["CNT`”]; nn = 100; v = Table[p = Prime[Range[n, 4*n]]; Conductor[p], {n, nn}]; t3 = Table[i = 2; While[p = Prime[Range[n, n + i - 1]]; Conductor[p] > v[[n]], i++]; i, {n, nn}]; Prime[Select[Range[nn], t3[[#]] > # &]]

Cf. S000435, S000437.

nonn

T. D. Noe, Dec 27 2014

© Tony D Noe 2014-2015