Primes p such that the iteration in S000334 converges at or before primepi(p) steps.
17, 19, 29, 41, 43, 53, 59, 67, 79, 101, 109, 127, 131, 149, 157, 163, 193, 197, 223, 227, 229, 257, 263, 269, 277, 281, 283, 293, 307, 311, 313, 317, 337, 353, 367, 373, 397, 401, 409, 419, 433, 439, 443, 449, 463, 487, 491, 499, 503, 509, 523, 541, 571
1
Note how linear this plot is. See the Bessoud and Wagon book for more information about the conductor (but not this function).
T. D. Noe, Plot of 727 terms
T. D. Noe, Table of 727 terms
David Bessoud and Stan Wagon, A Course in Computational Number Theory, Key College Publishing, 2000.
(Mma) Needs["CNT`”]; nn = 100; v = Table[p = Prime[Range[n, 4*n]]; Conductor[p], {n, nn}]; t3 = Table[i = 2; While[p = Prime[Range[n, n + i - 1]]; Conductor[p] > v[[n]], i++]; i, {n, nn}]; Prime[Select[Range[nn], t3[[#]] <= # &]]
nonn
T. D. Noe, Dec 27 2014