S000493


Five-tuples of squares used in S000491.

25, 16, 4, 4, 1, 49, 16, 16, 16, 1, 100, 49, 49, 1, 1, 169, 121, 16, 16, 16, 900, 841, 49, 9, 1, 2500, 2209, 121, 121, 49, 5929, 5776, 121, 16, 16, 30276, 15129, 15129, 9, 9

1

S000493

The first two numbers in each 5-tuple are usually so close that the plot points appear the same.

T. D. Noe, Plot of 8 5-tuples

Eric W. Weisstein, MathWorld: Lucas Number

(Mma) nn = 51; PerfectSquareQ[n_] := JacobiSymbol[n, 13] =!= -1 && JacobiSymbol[n, 19] =!= -1 && JacobiSymbol[n, 17] =!= -1 && JacobiSymbol[n, 23] =!= -1 && IntegerQ[Sqrt[n]]; l2 = Table[LucasL[n]^2, {n, 0, nn}]; t = {}; Do[If[a >= b >= c >= d && (a != b || a != c || a != d || b != c || b != d || c != d), n = a + b + c + d; If[PerfectSquareQ[n], AppendTo[t, {n, a, b, c, d}]]], {a, l2}, {b, l2}, {c, l2}, {d, l2}]; t

Cf. S000491-S000500.

nonn

T. D. Noe, Feb 24 2015

© Tony D Noe 2014-2015