S000494


Square root of the five-tuples used in S000491.

5, 4, 2, 2, 1, 7, 4, 4, 4, 1, 10, 7, 7, 1, 1, 13, 11, 4, 4, 4, 30, 29, 7, 3, 1, 50, 47, 11, 11, 7, 77, 76, 11, 4, 4, 174, 123, 123, 3, 3

1

S000494

The first two numbers in each 5-tuple are usually so close that the plot points appear the same.

T. D. Noe, Plot of 8 5-tuples

Eric W. Weisstein, MathWorld: Lucas Number

(Mma) nn = 51; PerfectSquareQ[n_] := JacobiSymbol[n, 13] =!= -1 && JacobiSymbol[n, 19] =!= -1 && JacobiSymbol[n, 17] =!= -1 && JacobiSymbol[n, 23] =!= -1 && IntegerQ[Sqrt[n]]; l2 = Table[LucasL[n]^2, {n, 0, nn}]; t = {}; Do[If[a >= b >= c >= d && (a != b || a != c || a != d || b != c || b != d || c != d), n = a + b + c + d; If[PerfectSquareQ[n], AppendTo[t, {n, a, b, c, d}]]], {a, l2}, {b, l2}, {c, l2}, {d, l2}]; Sqrt[t]

Cf. S000491-S000500.

nonn

T. D. Noe, Feb 24 2015

© Tony D Noe 2014-2015