Left- or right-truncatable primes in base 5.
2, 3, 7, 11, 13, 17, 19, 23, 37, 59, 61, 67, 73, 89, 97, 107, 113, 307, 311, 317, 337, 347, 367, 449, 487, 569, 607, 613, 1559, 1567, 1597, 1699, 2437, 2837, 3037, 3067, 7817, 7949, 15187, 39089, 39199, 39749, 75937, 77687, 195997, 232187, 352249, 979987, 4886237
1
These numbers must be converted to base 5 and then truncated. For instance, the number 101 is 412(5).
T. D. Noe, Plot of 49 terms
See references in A137812.
(Mma) b = 5; Clear[s]; n = 0; s[n] = Prime[Range[PrimePi[b-1]]]; While[cnt = 0; lst = Reap[Do[k = s[n][[i]]; Do[p = j*b^(n+1) + k; If[PrimeQ[p], Sow[p]; cnt++], {j, b-1}]; Do[p = b*k + j; If[PrimeQ[p], Sow[p]; cnt++], {j, b-1}], {i, Length[s[n]]}]]; cnt > 0, n++; s[n] = Union[lst[[2,1]]]]; t = s[0]; Do[t = Join[t, s[i]], {i, n}]; t
Cf. A137812 (base 10), S000910-S000916 (bases 9 to 3), S000917.
nonn,base,full
T. D. Noe, Jun 21 2016