Left- or right-truncatable primes in base 4.
2, 3, 7, 11, 13, 23, 29, 31, 43, 47, 53, 59, 61, 107, 127, 151, 157, 173, 181, 191, 223, 239, 251, 383, 431, 479, 509, 607, 619, 631, 727, 751, 919, 941, 991, 1019, 2039, 2477, 2557, 2909, 3067, 3581, 3677, 3691, 3767, 3823, 3967, 4013, 4079, 4091, 6653, 7919
1
These numbers must be converted to base 4 and then truncated. For instance, the number 107 is 1223(4).
T. D. Noe, Plot of 69 terms
T. D. Noe, Table of 69 terms
See references in A137812.
(Mma) b = 4; Clear[s]; n = 0; s[n] = Prime[Range[PrimePi[b-1]]]; While[cnt = 0; lst = Reap[Do[k = s[n][[i]]; Do[p = j*b^(n+1) + k; If[PrimeQ[p], Sow[p]; cnt++], {j, b-1}]; Do[p = b*k + j; If[PrimeQ[p], Sow[p]; cnt++], {j, b-1}], {i, Length[s[n]]}]]; cnt > 0, n++; s[n] = Union[lst[[2,1]]]]; t = s[0]; Do[t = Join[t, s[i]], {i, n}]; t
Cf. A137812 (base 10), S000910-S000916 (bases 9 to 3), S000917.
nonn,base,full
T. D. Noe, Jun 21 2016