S000936


In base 5, these positive numbers and their squares are palindromic.

1, 2, 6, 26, 31, 126, 156, 626, 651, 756, 3126, 3276, 3756, 15626, 15751, 16276, 18756, 78126, 78876, 81276, 93756, 390626, 391251, 393876, 406276, 468756, 1953126, 1956876, 1968876, 2031276, 2343756, 9765626, 9768751, 9781876, 9843876, 10156276, 11718756

1

S000936

Written in base 5, the numbers are 1, 2, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 100001, 101101,… whose squares are 1, 4, 121, 10201, 12321, 1002001, 1234321, 100020001, 102030201, 121242121, 10000200001, 10221412201,.

T. D. Noe, Plot of 111 terms

T. D. Noe, Table of 111 terms

Eric W. Weisstein, MathWorld: Palindromic Number

(Mma) makePalindrome[n_Integer, b_Integer, del_] := Module[{c = IntegerDigits[n, b], d}, d = If[del, Join[c, Reverse[Most[c]]], Join[c, Reverse[c]]]; FromDigits[d]]; palindromeQ[n_, b_] := Module[{d = IntegerDigits[n, b]}, d == Reverse[d]]; b = 5; t = {}; Do[Do[Do[d = makePalindrome[i, b, j]; e = FromDigits[IntegerDigits[d], b]; If[palindromeQ[e^2, b], AppendTo[t, e]], {i, b^(n - 1), b^n - 1}], {j, {True, False}}], {n, Floor[0.5 + 10*Log[3]/Log[b]]}]

Cf. S000934-S000941.

nonn,base

T. D. Noe, Aug 26 2016

© Tony D Noe 2014-2016