S000937


In base 6, these positive numbers and their squares are palindromic.

1, 2, 7, 37, 43, 217, 259, 1297, 1333, 1519, 1555, 7777, 8029, 9079, 46657, 46873, 47989, 48205, 54439, 54655, 279937, 281449, 287749, 326599, 1679617, 1680913, 1687609, 1688905, 1726309, 1727605, 1959559, 1960855, 10077697, 10086769, 10124569, 10357669

1

S000937

Written in base 6, the numbers are 1, 2, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, 100001,… whose squares are 1, 4, 121, 10201, 12321, 1002001, 1234321, 100020001, 102030201, 121242121, 123454321, 10000200001,.

T. D. Noe, Plot of 119 terms

T. D. Noe, Table of 119 terms

Eric W. Weisstein, MathWorld: Palindromic Number

(Mma) makePalindrome[n_Integer, b_Integer, del_] := Module[{c = IntegerDigits[n, b], d}, d = If[del, Join[c, Reverse[Most[c]]], Join[c, Reverse[c]]]; FromDigits[d]]; palindromeQ[n_, b_] := Module[{d = IntegerDigits[n, b]}, d == Reverse[d]]; b = 6; t = {}; Do[Do[Do[d = makePalindrome[i, b, j]; e = FromDigits[IntegerDigits[d], b]; If[palindromeQ[e^2, b], AppendTo[t, e]], {i, b^(n - 1), b^n - 1}], {j, {True, False}}], {n, Floor[0.5 + 10*Log[3]/Log[b]]}]

Cf. S000934-S000941.

nonn,base

T. D. Noe, Aug 26 2016

© Tony D Noe 2014-2016