S000938


In base 7, these positive numbers and their squares are palindromic.

1, 2, 4, 8, 32, 40, 50, 57, 64, 200, 344, 400, 1376, 1432, 2402, 2451, 2500, 2752, 2801, 9608, 9804, 16808, 17200, 19216, 19608, 67232, 68408, 117650, 117993, 118336, 120100, 120443, 134464, 134807, 136914, 470600, 471972, 823544, 826288, 840400, 843144, 941200

1

S000938

Written in base 7, the numbers are 1, 2, 4, 11, 44, 55, 101, 111, 121, 404, 1001, 1111, 4004, 4114, 10001,…. The squares are 1, 4, 22, 121, 2662, 4444, 10201, 12321, 14641, 224422, 1002001, 1234321, 22044022, 23300332, 100020001,.

T. D. Noe, Plot of 257 terms

T. D. Noe, Table of 257 terms

Eric W. Weisstein, MathWorld: Palindromic Number

(Mma) makePalindrome[n_Integer, b_Integer, del_] := Module[{c = IntegerDigits[n, b], d}, d = If[del, Join[c, Reverse[Most[c]]], Join[c, Reverse[c]]]; FromDigits[d]]; palindromeQ[n_, b_] := Module[{d = IntegerDigits[n, b]}, d == Reverse[d]]; b = 7; t = {}; Do[Do[Do[d = makePalindrome[i, b, j]; e = FromDigits[IntegerDigits[d], b]; If[palindromeQ[e^2, b], AppendTo[t, e]], {i, b^(n - 1), b^n - 1}], {j, {True, False}}], {n, Floor[0.5 + 10*Log[3]/Log[b]]}]

Cf. S000934-S000941.

nonn,base

T. D. Noe, Aug 26 2016

© Tony D Noe 2014-2016