S000243


Pi/5 - sqrt((5 + sqrt(5))/32).

1, 5, 2, 7, 9, 0, 2, 7, 2, 5, 7, 0, 3, 8, 1, 8, 6, 1, 6, 3, 4, 3, 0, 9, 0, 0, 9, 9, 6, 6, 2, 0, 9, 5, 0, 5, 1, 3, 6, 5, 8, 4, 5, 6, 2, 8, 1, 2, 1, 4, 6, 0, 5, 2, 9, 7, 1, 3, 3, 6, 0, 9, 6, 2, 4, 6, 4, 8, 6, 6, 9, 6, 2, 1, 4, 6, 4, 5, 0, 4, 8, 8, 6, 6, 2, 1, 0, 5, 5, 9, 5, 8, 3, 0, 1, 7, 7, 2, 2, 7, 5, 8, 4, 7, 9, 7, 5, 8, 5

0

S000243

When a pentagon is inscibed in a unit circle, this is the area of one of the five segments of the circle not in the pentagon.

T. D. Noe, Plot of 1000 terms

T. D. Noe, Table of 1000 terms

Eric W. Weisstein, Circular segment

Wikipedia, Circular segment

This is Pi/n - sqrt((p^2+q^2)*((p-1)^2+q^2)), where p = (1 + cos(2*Pi/n))/2 and q = sin(2*Pi/n)/2 for n=5.

The number is 0.1527902725703818616343090099662095051365845628….

(Mma) RealDigits[Pi/5 - Sqrt[(5 + Sqrt[5])/32], 10, 109][[1]]

Cf. S000236, S000237, S000238, S000244-S000249.

nonn,cons

T. D. Noe, Sep 04 2014

© Tony D Noe 2014-2015