S000244


Pi/7 - sqrt((1 + sin(Pi/14))/8).

5, 7, 8, 8, 3, 2, 0, 9, 2, 7, 8, 8, 1, 2, 7, 0, 1, 1, 4, 0, 4, 4, 1, 0, 7, 7, 1, 3, 1, 4, 7, 1, 5, 3, 6, 9, 1, 1, 9, 9, 9, 7, 9, 7, 6, 9, 9, 2, 4, 2, 7, 8, 1, 3, 6, 3, 2, 4, 6, 0, 3, 4, 1, 6, 4, 2, 8, 5, 0, 4, 9, 3, 6, 6, 7, 7, 5, 9, 2, 1, 8, 1, 0, 7, 1, 3, 8, 2, 8, 7, 4, 6, 2, 3, 5, 5, 1, 8, 5, 9, 5, 6, 0, 4, 6

-1

S000244

When a heptagon is inscibed in a unit circle, this is the area of one of the seven segments of the circle not in the heptagon.

T. D. Noe, Plot of 1000 terms

T. D. Noe, Table of 1000 terms

Eric W. Weisstein, Circular segment

Wikipedia, Circular segment

This is Pi/n - sqrt((p^2+q^2)*((p-1)^2+q^2)), where p = (1 + cos(2*Pi/n))/2 and q = sin(2*Pi/n)/2 for n=7.

The number is 0.057883209278812701140441077131471536911999797699….

(Mma) RealDigits[Pi/7 - Sqrt[(1 - Sin[Pi/14])/8], 10, 105][[1]]

Cf. S000236S000237S000238, S000243-S000249S000250S000251.

nonn,cons

T. D. Noe, Sep 05 2014

© Tony D Noe 2014-2015