S000245


Pi/8 - sqrt(2)/4.

3, 9, 1, 4, 5, 6, 9, 1, 1, 0, 5, 4, 5, 0, 3, 9, 2, 6, 0, 7, 4, 0, 8, 2, 4, 1, 8, 5, 7, 5, 1, 3, 3, 4, 0, 8, 8, 2, 2, 2, 8, 2, 0, 6, 0, 7, 7, 6, 5, 1, 2, 0, 9, 3, 2, 7, 6, 9, 8, 1, 3, 9, 5, 4, 0, 7, 9, 3, 9, 3, 1, 1, 7, 0, 2, 4, 9, 3, 6, 5, 1, 1, 5, 9, 0, 7, 4, 6, 9, 5, 8, 5, 8, 5, 4, 2, 4, 0, 3, 1, 4, 0, 1, 5, 0

-1

S000245

When an octagon is inscibed in a unit circle, this is the area of one of the eight segments of the circle not in the octagon.

T. D. Noe, Plot of 1000 terms

T. D. Noe, Table of 1000 terms

Eric W. Weisstein, Circular segment

Wikipedia, Circular segment

This is Pi/n - sqrt((p^2+q^2)*((p-1)^2+q^2)), where p = (1 + cos(2*Pi/n))/2 and q = sin(2*Pi/n)/2 for n=8.

The number is 0.03914569110545039260740824185751334088222820607765….

(Mma) RealDigits[Pi/8 - Sqrt[2]/4, 10, 105][[1]]

Cf. S000236S000237S000238, S000243-S000249S000250S000251.

nonn,cons

T. D. Noe, Sep 05 2014

© Tony D Noe 2014-2015