S000247


Pi/10 - sqrt((5 - sqrt(5))/32).

2, 0, 2, 6, 6, 6, 3, 9, 2, 1, 2, 7, 4, 2, 7, 5, 9, 2, 6, 1, 9, 1, 1, 3, 6, 1, 0, 0, 8, 4, 1, 3, 9, 0, 4, 1, 2, 0, 8, 9, 0, 7, 2, 1, 1, 1, 5, 9, 3, 7, 5, 8, 6, 5, 6, 1, 3, 5, 8, 2, 1, 8, 8, 5, 2, 1, 4, 2, 4, 0, 3, 5, 4, 7, 4, 4, 4, 9, 2, 1, 1, 0, 8, 5, 5, 1, 4, 5, 7, 6, 0, 2, 8, 4, 1, 0, 3, 8, 8, 1, 8, 1, 8, 8, 2

-1

S000247

When an 10-gon is inscibed in a unit circle, this is the area of one of the ten segments of the circle not in the 10-gon.

T. D. Noe, Plot of 1000 terms

T. D. Noe, Table of 1000 terms

Eric W. Weisstein, Circular segment

Wikipedia, Circular segment

This is Pi/n - sqrt((p^2+q^2)*((p-1)^2+q^2)), where p = (1 + cos(2*Pi/n))/2 and q = sin(2*Pi/n)/2 for n=10.

The number is 0.0202666392127427592619113610084139041208907211159….

(Mma) RealDigits[Pi/10 - Sqrt[(5 - Sqrt[5])/32], 10, 105][[1]]

Cf. S000236S000237S000238, S000243-S000249S000250S000251.

nonn,cons

T. D. Noe, Sep 05 2014

© Tony D Noe 2014-2015