S000361


Numbers n such that 4^n-1 has only one primitive prime factor.

1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 28, 40, 60, 92, 96, 104, 140, 148, 156, 300, 356, 408, 596, 612, 692, 732, 756, 800, 952, 996, 1004, 1228, 1268, 2240, 2532, 3060, 3796, 3824, 3944, 5096, 5540, 7476, 7700, 8544, 9800

1

S000361

Numbers n such that S000002(n) = 1.

T. D. Noe, Plot of 45 terms

T. D. Noe, Table of 45 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 4; Select[Range[1000], PrimePowerQ[Cyclotomic[#, d]/GCD[Cyclotomic[#, d], #]] &]

Cf. A161508 (2^n-1 case), S000002S000360-S000366.

nonn,hard,more

T. D. Noe, Nov 20 2014

© Tony D Noe 2014-2015