S000362


Numbers n such that 5^n-1 has only one primitive prime factor.

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 18, 24, 28, 47, 48, 49, 56, 57, 88, 90, 92, 108, 110, 116, 120, 127, 134, 141, 149, 161, 171, 181, 198, 202, 206, 236, 248, 288, 357, 384, 420, 458, 500, 530, 536, 619, 620, 694, 798, 897, 929, 981, 992, 1064, 1134, 1230

1

S000362

Numbers n such that S000003(n) = 1.

T. D. Noe, Plot of 87 terms

T. D. Noe, Table of 87 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 5; Select[Range[1000], PrimePowerQ[Cyclotomic[#, d]/GCD[Cyclotomic[#, d], #]] &]

Cf. A161508 (2^n-1 case), S000003S000360-S000366.

nonn,hard

T. D. Noe, Nov 20 2014

© Tony D Noe 2014-2015