S000363


Numbers n such that 6^n-1 has only one primitive prime factor.

1, 2, 3, 4, 5, 6, 7, 8, 18, 21, 22, 24, 29, 30, 42, 50, 62, 71, 86, 90, 94, 118, 124, 127, 129, 144, 154, 186, 192, 214, 271, 354, 360, 411, 480, 509, 558, 575, 663, 764, 814, 825, 874, 1028, 1049, 1050, 1102, 1113, 1131, 1158, 1376, 1464, 1468, 1535, 1622

1

S000363

Numbers n such that S000004(n) = 1.

T. D. Noe, Plot of 84 terms

T. D. Noe, Table of 84 terms

Eric W. Weisstein, MathWorld: Primitive Prime Factor

(Mma) d = 6; Select[Range[1000], PrimePowerQ[Cyclotomic[#, d]/GCD[Cyclotomic[#, d], #]] &]

Cf. A161508 (2^n-1 case), S000004S000360-S000366.

nonn,hard

T. D. Noe, Nov 20 2014

© Tony D Noe 2014-2015