All linear sixth-order sequences are a linear combination of these six sequences.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 24, 28, 30, 31, 32, 32, 48, 56, 60, 62, 63, 63, 95, 111, 119, 123, 125, 125, 188, 220, 236, 244, 248, 248, 373, 436, 468, 484, 492, 492, 740, 865, 928, 960, 976
1
Note that the 6-th row is the first row shifted by one.
T. D. Noe, Plot of 50 6-tuples
T. D. Noe, Table of 50 6-tuples
Eric W. Weisstein, MathWorld: Linear Recurrence Equation
(Mma) nn = 6; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t
Cf. A001592, A251706-A251709, S000822-S000831.
nonn,tabl
T. D. Noe, Jan 15 2016