All linear seventh-order sequences are a linear combination of these seven sequences.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 96, 112, 120, 124, 126, 127, 127, 191, 223, 239, 247, 251, 253, 253, 380, 444, 476, 492
1
Note that the 7-th row is the first row shifted by one.
T. D. Noe, Plot of 42 7-tuples
T. D. Noe, Table of 42 7-tuples
Eric W. Weisstein, MathWorld: Linear Recurrence Equation
(Mma) nn = 7; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t
Cf. A066178, A251710-A251714, S000822-S000831.
nonn,tabl
T. D. Noe, Jan 15 2016