S000828


All linear eighth-order sequences are a linear combination of these eight sequences.

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 64, 96, 112, 120, 124, 126, 127, 128, 128, 192, 224, 240, 248, 252, 254

1

S000828

Note that the 8-th row is the first row shifted by one.

T. D. Noe, Plot of 37 8-tuples

T. D. Noe, Table of 37 8-tuples

Eric W. Weisstein, MathWorld: Linear Recurrence Equation

(Mma) nn = 8; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t

Cf. A079262, A251672, A251740-A251745S000822-S000831.

nonn,tabl

T. D. Noe, Jan 15 2016

© Tony D Noe 2014-2016