All linear eighth-order sequences are a linear combination of these eight sequences.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 64, 96, 112, 120, 124, 126, 127, 128, 128, 192, 224, 240, 248, 252, 254
1
Note that the 8-th row is the first row shifted by one.
T. D. Noe, Plot of 37 8-tuples
T. D. Noe, Table of 37 8-tuples
Eric W. Weisstein, MathWorld: Linear Recurrence Equation
(Mma) nn = 8; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t
Cf. A079262, A251672, A251740-A251745, S000822-S000831.
nonn,tabl
T. D. Noe, Jan 15 2016