All linear ninth-order sequences are a linear combination of these nine sequences.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 6, 7, 8, 8, 8, 8, 8, 8, 8, 12, 14, 15, 16, 16, 16, 16, 16, 16, 24, 28, 30, 31, 32, 32, 32, 32, 32, 48, 56, 60, 62, 63, 64, 64, 64, 64, 96, 112, 120, 124, 126, 127, 128, 128, 128
1
Note that the 9-th row is the first row shifted by one.
T. D. Noe, Plot of 33 9-tuples
T. D. Noe, Table of 33 9-tuples
Eric W. Weisstein, MathWorld: Linear Recurrence Equation
(Mma) nn = 9; t = IdentityMatrix[nn]; Do[AppendTo[t, Sum[t[[k - i]], {i, nn}]], {k, nn + 1, nn + 60/nn}]; t = Drop[Flatten[t], nn^2]; t
Cf. A104144, A251746-A251752, S000822-S000831.
nonn,tabl
T. D. Noe, Jan 15 2016